ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.00666
49
45
v1v2v3 (latest)

Multi-period Time Series Modeling with Sparsity via Bayesian Variational Inference

3 July 2017
Daniel J. Hsu
    BDL
ArXiv (abs)PDFHTML
Abstract

In this paper, we use augmented the hierarchical latent variable model to model multi-period time series, where the dynamics of time series are governed by factors or trends in multiple periods. Previous methods based on stacked recurrent neural network (RNN) and deep belief network (DBN) models cannot model the tendencies in multiple periods, and no models for sequential data pay special attention to redundant input variables which have no or even negative impact on prediction and modeling. Applying hierarchical latent variable model with multiple transition periods, our proposed algorithm can capture dependencies in different temporal resolutions. Introducing Bayesian neural network with Horseshoe prior as input network, we can discard the redundant input variables in the optimization process, concurrently with the learning of other parts of the model. Based on experiments with both synthetic and real-world data, we show that the proposed method significantly improves the modeling and prediction performance on multi-period time series.

View on arXiv
Comments on this paper