ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.00380
19
13

Vectorial Dimension Reduction for Tensors Based on Bayesian Inference

3 July 2017
Fujiao Ju
Yanfeng Sun
Junbin Gao
Yongli Hu
Baocai Yin
ArXivPDFHTML
Abstract

Dimensionality reduction for high-order tensors is a challenging problem. In conventional approaches, higher order tensors are `vectorized` via Tucker decomposition to obtain lower order tensors. This will destroy the inherent high-order structures or resulting in undesired tensors, respectively. This paper introduces a probabilistic vectorial dimensionality reduction model for tensorial data. The model represents a tensor by employing a linear combination of same order basis tensors, thus it offers a mechanism to directly reduce a tensor to a vector. Under this expression, the projection base of the model is based on the tensor CandeComp/PARAFAC (CP) decomposition and the number of free parameters in the model only grows linearly with the number of modes rather than exponentially. A Bayesian inference has been established via the variational EM approach. A criterion to set the parameters (factor number of CP decomposition and the number of extracted features) is empirically given. The model outperforms several existing PCA-based methods and CP decomposition on several publicly available databases in terms of classification and clustering accuracy.

View on arXiv
Comments on this paper