ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.09691
36
31

Speaker Identification in the Shouted Environment Using Suprasegmental Hidden Markov Models

29 June 2017
I. Shahin
ArXiv (abs)PDFHTML
Abstract

In this paper, Suprasegmental Hidden Markov Models (SPHMMs) have been used to enhance the recognition performance of text-dependent speaker identification in the shouted environment. Our speech database consists of two databases: our collected database and the Speech Under Simulated and Actual Stress (SUSAS) database. Our results show that SPHMMs significantly enhance speaker identification performance compared to Second-Order Circular Hidden Markov Models (CHMM2s) in the shouted environment. Using our collected database, speaker identification performance in this environment is 68% and 75% based on CHMM2s and SPHMMs respectively. Using the SUSAS database, speaker identification performance in the same environment is 71% and 79% based on CHMM2s and SPHMMs respectively.

View on arXiv
Comments on this paper