ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.09410
16
15

Generalized notions of sparsity and restricted isometry property. Part I: A unified framework

28 June 2017
Marius Junge
Kiryung Lee
ArXivPDFHTML
Abstract

The restricted isometry property (RIP) is an integral tool in the analysis of various inverse problems with sparsity models. Motivated by the applications of compressed sensing and dimensionality reduction of low-rank tensors, we propose generalized notions of sparsity and provide a unified framework for the corresponding RIP, in particular when combined with isotropic group actions. Our results extend an approach by Rudelson and Vershynin to a much broader context including commutative and noncommutative function spaces. Moreover, our Banach space notion of sparsity applies to affine group actions. The generalized approach in particular applies to high order tensor products.

View on arXiv
Comments on this paper