ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.08801
11
2

Detecting Approximate Reflection Symmetry in a Point Set using Optimization on Manifold

27 June 2017
R. Nagar
Shanmuganathan Raman
ArXivPDFHTML
Abstract

We propose an algorithm to detect approximate reflection symmetry present in a set of volumetrically distributed points belonging to Rd\mathbb{R}^dRd containing a distorted reflection symmetry pattern. We pose the problem of detecting approximate reflection symmetry as the problem of establishing correspondences between the points which are reflections of each other and we determine the reflection symmetry transformation. We formulate an optimization framework in which the problem of establishing the correspondences amounts to solving a linear assignment problem and the problem of determining the reflection symmetry transformation amounts to solving an optimization problem on a smooth Riemannian product manifold. The proposed approach estimates the symmetry from the geometry of the points and is descriptor independent. We evaluate the performance of the proposed approach on the standard benchmark dataset and achieve the state-of-the-art performance. We further show the robustness of our approach by varying the amount of distortion in a perfect reflection symmetry pattern where we perturb each point by a different amount of perturbation. We demonstrate the effectiveness of the method by applying it to the problem of 2-D and 3-D reflection symmetry detection along with comparisons.

View on arXiv
Comments on this paper