ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.07362
26
12

Tracking Single-Cells in Overcrowded Bacterial Colonies

22 June 2017
Athanasios D. Balomenos
P. Tsakanikas
E. Manolakos
ArXiv (abs)PDFHTML
Abstract

Cell tracking enables data extraction from time-lapse "cell movies" and promotes modeling biological processes at the single-cell level. We introduce a new fully automated computational strategy to track accurately cells across frames in time-lapse movies. Our method is based on a dynamic neighborhoods formation and matching approach, inspired by motion estimation algorithms for video compression. Moreover, it exploits "divide and conquer" opportunities to solve effectively the challenging cells tracking problem in overcrowded bacterial colonies. Using cell movies generated by different labs we demonstrate that the accuracy of the proposed method remains very high (exceeds 97%) even when analyzing large overcrowded microbial colonies.

View on arXiv
Comments on this paper