ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.06341
6
25

SPLBoost: An Improved Robust Boosting Algorithm Based on Self-paced Learning

20 June 2017
Kaidong Wang
Yao Wang
Qian Zhao
Deyu Meng
Zongben Xu
ArXivPDFHTML
Abstract

It is known that Boosting can be interpreted as a gradient descent technique to minimize an underlying loss function. Specifically, the underlying loss being minimized by the traditional AdaBoost is the exponential loss, which is proved to be very sensitive to random noise/outliers. Therefore, several Boosting algorithms, e.g., LogitBoost and SavageBoost, have been proposed to improve the robustness of AdaBoost by replacing the exponential loss with some designed robust loss functions. In this work, we present a new way to robustify AdaBoost, i.e., incorporating the robust learning idea of Self-paced Learning (SPL) into Boosting framework. Specifically, we design a new robust Boosting algorithm based on SPL regime, i.e., SPLBoost, which can be easily implemented by slightly modifying off-the-shelf Boosting packages. Extensive experiments and a theoretical characterization are also carried out to illustrate the merits of the proposed SPLBoost.

View on arXiv
Comments on this paper