ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.06066
21
14

On Quadratic Convergence of DC Proximal Newton Algorithm for Nonconvex Sparse Learning in High Dimensions

19 June 2017
Xingguo Li
Lin F. Yang
J. Ge
Jarvis Haupt
Tong Zhang
T. Zhao
ArXivPDFHTML
Abstract

We propose a DC proximal Newton algorithm for solving nonconvex regularized sparse learning problems in high dimensions. Our proposed algorithm integrates the proximal Newton algorithm with multi-stage convex relaxation based on the difference of convex (DC) programming, and enjoys both strong computational and statistical guarantees. Specifically, by leveraging a sophisticated characterization of sparse modeling structures/assumptions (i.e., local restricted strong convexity and Hessian smoothness), we prove that within each stage of convex relaxation, our proposed algorithm achieves (local) quadratic convergence, and eventually obtains a sparse approximate local optimum with optimal statistical properties after only a few convex relaxations. Numerical experiments are provided to support our theory.

View on arXiv
Comments on this paper