ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.02379
77
211
v1v2v3 (latest)

Training Quantized Nets: A Deeper Understanding

7 June 2017
Hao Li
Soham De
Zheng Xu
Christoph Studer
H. Samet
Tom Goldstein
    MQ
ArXiv (abs)PDFHTML
Abstract

Currently, deep neural networks are deployed on low-power embedded devices by first training a full-precision model using powerful computing hardware, and then deriving a corresponding low-precision model for efficient inference on such systems. However, training models directly with coarsely quantized weights is a key step towards learning on embedded platforms that have limited computing resources, memory capacity, and power consumption. Numerous recent publications have studied methods for training quantized network, but these studies have mostly been empirical. In this work, we investigate training methods for quantized neural networks from a theoretical viewpoint. We first explore accuracy guarantees for training methods under convexity assumptions. We then look at the behavior of algorithms for non-convex problems, and we show that training algorithms that exploit high-precision representations have an important annealing property that purely quantized training methods lack, which explains many of the observed empirical differences between these types of algorithms.

View on arXiv
Comments on this paper