35
28

Nonconvex penalties with analytical solutions for one-bit compressive sensing

Abstract

One-bit measurements widely exist in the real world, and they can be used to recover sparse signals. This task is known as the problem of learning halfspaces in learning theory and one-bit compressive sensing (1bit-CS) in signal processing. In this paper, we propose novel algorithms based on both convex and nonconvex sparsity-inducing penalties for robust 1bit-CS. We provide a sufficient condition to verify whether a solution is globally optimal or not. Then we show that the globally optimal solution for positive homogeneous penalties can be obtained in two steps: a proximal operator and a normalization step. For several nonconvex penalties, including minimax concave penalty (MCP), 0\ell_0 norm, and sorted 1\ell_1 penalty, we provide fast algorithms for finding the analytical solutions by solving the dual problem. Specifically, our algorithm is more than 200200 times faster than the existing algorithm for MCP. Its efficiency is comparable to the algorithm for the 1\ell_1 penalty in time, while its performance is much better. Among these penalties, the sorted 1\ell_1 penalty is most robust to noise in different settings.

View on arXiv
Comments on this paper