ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.00280
52
37

Integer Echo State Networks: Efficient Reservoir Computing for Digital Hardware

1 June 2017
Denis Kleyko
E. P. Frady
Mansour Kheffache
Evgeny Osipov
ArXivPDFHTML
Abstract

We propose an approximation of Echo State Networks (ESN) that can be efficiently implemented on digital hardware based on the mathematics of hyperdimensional computing. The reservoir of the proposed integer Echo State Network (intESN) is a vector containing only n-bits integers (where n<8 is normally sufficient for a satisfactory performance). The recurrent matrix multiplication is replaced with an efficient cyclic shift operation. The proposed intESN approach is verified with typical tasks in reservoir computing: memorizing of a sequence of inputs; classifying time-series; learning dynamic processes. Such architecture results in dramatic improvements in memory footprint and computational efficiency, with minimal performance loss. The experiments on a field-programmable gate array confirm that the proposed intESN approach is much more energy efficient than the conventional ESN.

View on arXiv
Comments on this paper