ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.11181
8
19

AirScript - Creating Documents in Air

30 May 2017
Ayushman Dash
Amit Sahu
Rajveer Shringi
J. Gamboa
Muhammad Zeshan Afzal
M. I. Malik
Sheraz Ahmed
Andreas Dengel
    VGen
ArXivPDFHTML
Abstract

This paper presents a novel approach, called AirScript, for creating, recognizing and visualizing documents in air. We present a novel algorithm, called 2-DifViz, that converts the hand movements in air (captured by a Myo-armband worn by a user) into a sequence of x, y coordinates on a 2D Cartesian plane, and visualizes them on a canvas. Existing sensor-based approaches either do not provide visual feedback or represent the recognized characters using prefixed templates. In contrast, AirScript stands out by giving freedom of movement to the user, as well as by providing a real-time visual feedback of the written characters, making the interaction natural. AirScript provides a recognition module to predict the content of the document created in air. To do so, we present a novel approach based on deep learning, which uses the sensor data and the visualizations created by 2-DifViz. The recognition module consists of a Convolutional Neural Network (CNN) and two Gated Recurrent Unit (GRU) Networks. The output from these three networks is fused to get the final prediction about the characters written in air. AirScript can be used in highly sophisticated environments like a smart classroom, a smart factory or a smart laboratory, where it would enable people to annotate pieces of texts wherever they want without any reference surface. We have evaluated AirScript against various well-known learning models (HMM, KNN, SVM, etc.) on the data of 12 participants. Evaluation results show that the recognition module of AirScript largely outperforms all of these models by achieving an accuracy of 91.7% in a person independent evaluation and a 96.7% accuracy in a person dependent evaluation.

View on arXiv
Comments on this paper