ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.10861
17
30

Generic Tubelet Proposals for Action Localization

30 May 2017
Jiawei He
Mostafa S. Ibrahim
Zhiwei Deng
Greg Mori
    MedIm
    ViT
ArXivPDFHTML
Abstract

We develop a novel framework for action localization in videos. We propose the Tube Proposal Network (TPN), which can generate generic, class-independent, video-level tubelet proposals in videos. The generated tubelet proposals can be utilized in various video analysis tasks, including recognizing and localizing actions in videos. In particular, we integrate these generic tubelet proposals into a unified temporal deep network for action classification. Compared with other methods, our generic tubelet proposal method is accurate, general, and is fully differentiable under a smoothL1 loss function. We demonstrate the performance of our algorithm on the standard UCF-Sports, J-HMDB21, and UCF-101 datasets. Our class-independent TPN outperforms other tubelet generation methods, and our unified temporal deep network achieves state-of-the-art localization results on all three datasets.

View on arXiv
Comments on this paper