ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.10698
22
116

ResnetCrowd: A Residual Deep Learning Architecture for Crowd Counting, Violent Behaviour Detection and Crowd Density Level Classification

30 May 2017
Mark A Marsden
Kevin McGuinness
Suzanne Little
Noel E. O'Connor
ArXivPDFHTML
Abstract

In this paper we propose ResnetCrowd, a deep residual architecture for simultaneous crowd counting, violent behaviour detection and crowd density level classification. To train and evaluate the proposed multi-objective technique, a new 100 image dataset referred to as Multi Task Crowd is constructed. This new dataset is the first computer vision dataset fully annotated for crowd counting, violent behaviour detection and density level classification. Our experiments show that a multi-task approach boosts individual task performance for all tasks and most notably for violent behaviour detection which receives a 9\% boost in ROC curve AUC (Area under the curve). The trained ResnetCrowd model is also evaluated on several additional benchmarks highlighting the superior generalisation of crowd analysis models trained for multiple objectives.

View on arXiv
Comments on this paper