ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.10464
9
460

Polynomial Codes: an Optimal Design for High-Dimensional Coded Matrix Multiplication

30 May 2017
Qian-long Yu
M. Maddah-ali
A. Avestimehr
ArXivPDFHTML
Abstract

We consider a large-scale matrix multiplication problem where the computation is carried out using a distributed system with a master node and multiple worker nodes, where each worker can store parts of the input matrices. We propose a computation strategy that leverages ideas from coding theory to design intermediate computations at the worker nodes, in order to efficiently deal with straggling workers. The proposed strategy, named as \emph{polynomial codes}, achieves the optimum recovery threshold, defined as the minimum number of workers that the master needs to wait for in order to compute the output. Furthermore, by leveraging the algebraic structure of polynomial codes, we can map the reconstruction problem of the final output to a polynomial interpolation problem, which can be solved efficiently. Polynomial codes provide order-wise improvement over the state of the art in terms of recovery threshold, and are also optimal in terms of several other metrics. Furthermore, we extend this code to distributed convolution and show its order-wise optimality.

View on arXiv
Comments on this paper