ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08018
11
6

Use of Knowledge Graph in Rescoring the N-Best List in Automatic Speech Recognition

22 May 2017
A. Kumar
C. Morales
Maria-Esther Vidal
C. Schmidt
Sören Auer
ArXiv (abs)PDFHTML
Abstract

With the evolution of neural network based methods, automatic speech recognition (ASR) field has been advanced to a level where building an application with speech interface is a reality. In spite of these advances, building a real-time speech recogniser faces several problems such as low recognition accuracy, domain constraint, and out-of-vocabulary words. The low recognition accuracy problem is addressed by improving the acoustic model, language model, decoder and by rescoring the N-best list at the output of the decoder. We are considering the N-best list rescoring approach to improve the recognition accuracy. Most of the methods in the literature use the grammatical, lexical, syntactic and semantic connection between the words in a recognised sentence as a feature to rescore. In this paper, we have tried to see the semantic relatedness between the words in a sentence to rescore the N-best list. Semantic relatedness is computed using TransE~\cite{bordes2013translating}, a method for low dimensional embedding of a triple in a knowledge graph. The novelty of the paper is the application of semantic web to automatic speech recognition.

View on arXiv
Comments on this paper