ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.07603
21
12

Multi-output Polynomial Networks and Factorization Machines

22 May 2017
Mathieu Blondel
Vlad Niculae
Takuma Otsuka
N. Ueda
ArXivPDFHTML
Abstract

Factorization machines and polynomial networks are supervised polynomial models based on an efficient low-rank decomposition. We extend these models to the multi-output setting, i.e., for learning vector-valued functions, with application to multi-class or multi-task problems. We cast this as the problem of learning a 3-way tensor whose slices share a common basis and propose a convex formulation of that problem. We then develop an efficient conditional gradient algorithm and prove its global convergence, despite the fact that it involves a non-convex basis selection step. On classification tasks, we show that our algorithm achieves excellent accuracy with much sparser models than existing methods. On recommendation system tasks, we show how to combine our algorithm with a reduction from ordinal regression to multi-output classification and show that the resulting algorithm outperforms simple baselines in terms of ranking accuracy.

View on arXiv
Comments on this paper