ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.06168
22
39

Two-Sample Tests for Large Random Graphs Using Network Statistics

17 May 2017
D. Ghoshdastidar
Maurilio Gutzeit
Alexandra Carpentier
U. V. Luxburg
ArXivPDFHTML
Abstract

We consider a two-sample hypothesis testing problem, where the distributions are defined on the space of undirected graphs, and one has access to only one observation from each model. A motivating example for this problem is comparing the friendship networks on Facebook and LinkedIn. The practical approach to such problems is to compare the networks based on certain network statistics. In this paper, we present a general principle for two-sample hypothesis testing in such scenarios without making any assumption about the network generation process. The main contribution of the paper is a general formulation of the problem based on concentration of network statistics, and consequently, a consistent two-sample test that arises as the natural solution for this problem. We also show that the proposed test is minimax optimal for certain network statistics.

View on arXiv
Comments on this paper