ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.05922
33
37

LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems

16 May 2017
Subarna Tripathi
G. Dane
Byeongkeun Kang
V. Bhaskaran
Truong Thao Nguyen
    ObjD
ArXivPDFHTML
Abstract

Deep convolutional Neural Networks (CNN) are the state-of-the-art performers for object detection task. It is well known that object detection requires more computation and memory than image classification. Thus the consolidation of a CNN-based object detection for an embedded system is more challenging. In this work, we propose LCDet, a fully-convolutional neural network for generic object detection that aims to work in embedded systems. We design and develop an end-to-end TensorFlow(TF)-based model. Additionally, we employ 8-bit quantization on the learned weights. We use face detection as a use case. Our TF-Slim based network can predict different faces of different shapes and sizes in a single forward pass. Our experimental results show that the proposed method achieves comparative accuracy comparing with state-of-the-art CNN-based face detection methods, while reducing the model size by 3x and memory-BW by ~4x comparing with one of the best real-time CNN-based object detector such as YOLO. TF 8-bit quantized model provides additional 4x memory reduction while keeping the accuracy as good as the floating point model. The proposed model thus becomes amenable for embedded implementations.

View on arXiv
Comments on this paper