ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.04528
14
0

Self-Committee Approach for Image Restoration Problems using Convolutional Neural Network

12 May 2017
Byeongyong Ahn
N. Cho
    SupR
ArXivPDFHTML
Abstract

There have been many discriminative learning methods using convolutional neural networks (CNN) for several image restoration problems, which learn the mapping function from a degraded input to the clean output. In this letter, we propose a self-committee method that can find enhanced restoration results from the multiple trial of a trained CNN with different but related inputs. Specifically, it is noted that the CNN sometimes finds different mapping functions when the input is transformed by a reversible transform and thus produces different but related outputs with the original. Hence averaging the outputs for several different transformed inputs can enhance the results as evidenced by the network committee methods. Unlike the conventional committee approaches that require several networks, the proposed method needs only a single network. Experimental results show that adding an additional transform as a committee always brings additional gain on image denoising and single image supre-resolution problems.

View on arXiv
Comments on this paper