ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.02679
14
4

Nonasymptotic estimation and support recovery for high dimensional sparse covariance matrices

7 May 2017
A. B. Kashlak
Linglong Kong
ArXivPDFHTML
Abstract

We propose a general framework for nonasymptotic covariance matrix estimation making use of concentration inequality-based confidence sets. We specify this framework for the estimation of large sparse covariance matrices through incorporation of past thresholding estimators with key emphasis on support recovery. This technique goes beyond past results for thresholding estimators by allowing for a wide range of distributional assumptions beyond merely sub-Gaussian tails. This methodology can furthermore be adapted to a wide range of other estimators and settings. The usage of nonasymptotic dimension-free confidence sets yields good theoretical performance. Through extensive simulations, it is demonstrated to have superior performance when compared with other such methods. In the context of support recovery, we are able to specify a false positive rate and optimize to maximize the true recoveries.

View on arXiv
Comments on this paper