ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.02438
19
47

Face Super-Resolution Through Wasserstein GANs

6 May 2017
Zhimin Chen
Yuguang Tong
    GAN
ArXivPDFHTML
Abstract

Generative adversarial networks (GANs) have received a tremendous amount of attention in the past few years, and have inspired applications addressing a wide range of problems. Despite its great potential, GANs are difficult to train. Recently, a series of papers (Arjovsky & Bottou, 2017a; Arjovsky et al. 2017b; and Gulrajani et al. 2017) proposed using Wasserstein distance as the training objective and promised easy, stable GAN training across architectures with minimal hyperparameter tuning. In this paper, we compare the performance of Wasserstein distance with other training objectives on a variety of GAN architectures in the context of single image super-resolution. Our results agree that Wasserstein GAN with gradient penalty (WGAN-GP) provides stable and converging GAN training and that Wasserstein distance is an effective metric to gauge training progress.

View on arXiv
Comments on this paper