ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.01372
12
0

Brownian forgery of statistical dependences

3 May 2017
V. Wens
ArXivPDFHTML
Abstract

The balance held by Brownian motion between temporal regularity and randomness is embodied in a remarkable way by Levy's forgery of continuous functions. Here we describe how this property can be extended to forge arbitrary dependences between two statistical systems, and then establish a new Brownian independence test based on fluctuating random paths. We also argue that this result allows revisiting the theory of Brownian covariance from a physical perspective and opens the possibility of engineering nonlinear correlation measures from more general functional integrals.

View on arXiv
Comments on this paper