LIVEJoin the current RTAI Connect sessionJoin now

29
11

Analyzing Knowledge Transfer in Deep Q-Networks for Autonomously Handling Multiple Intersections

Abstract

We analyze how the knowledge to autonomously handle one type of intersection, represented as a Deep Q-Network, translates to other types of intersections (tasks). We view intersection handling as a deep reinforcement learning problem, which approximates the state action Q function as a deep neural network. Using a traffic simulator, we show that directly copying a network trained for one type of intersection to another type of intersection decreases the success rate. We also show that when a network that is pre-trained on Task A and then is fine-tuned on a Task B, the resulting network not only performs better on the Task B than an network exclusively trained on Task A, but also retained knowledge on the Task A. Finally, we examine a lifelong learning setting, where we train a single network on five different types of intersections sequentially and show that the resulting network exhibited catastrophic forgetting of knowledge on previous tasks. This result suggests a need for a long-term memory component to preserve knowledge.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.