ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.00534
41
35

Single image depth estimation by dilated deep residual convolutional neural network and soft-weight-sum inference

27 April 2017
Bo Li
Yuchao Dai
Huahui Chen
Mingyi He
    MDE
ArXivPDFHTML
Abstract

This paper proposes a new residual convolutional neural network (CNN) architecture for single image depth estimation. Compared with existing deep CNN based methods, our method achieves much better results with fewer training examples and model parameters. The advantages of our method come from the usage of dilated convolution, skip connection architecture and soft-weight-sum inference. Experimental evaluation on the NYU Depth V2 dataset shows that our method outperforms other state-of-the-art methods by a margin.

View on arXiv
Comments on this paper