ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.00368
35
97

How to Read Many-Objective Solution Sets in Parallel Coordinates

30 April 2017
Mingxing Li
Liangli Zhen
Xin Yao
    OffRL
ArXiv (abs)PDFHTML
Abstract

Rapid development of evolutionary algorithms in handling many-objective optimization problems requires viable methods of visualizing a high-dimensional solution set. Parallel coordinates which scale well to high-dimensional data are such a method, and have been frequently used in evolutionary many-objective optimization. However, the parallel coordinates plot is not as straightforward as the classic scatter plot to present the information contained in a solution set. In this paper, we make some observations of the parallel coordinates plot, in terms of comparing the quality of solution sets, understanding the shape and distribution of a solution set, and reflecting the relation between objectives. We hope that these observations could provide some guidelines as to the proper use of parallel coordinates in evolutionary many-objective optimization.

View on arXiv
Comments on this paper