ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.08224
13
13

Punny Captions: Witty Wordplay in Image Descriptions

26 April 2017
Arjun Chandrasekaran
Devi Parikh
Joey Tianyi Zhou
ArXivPDFHTML
Abstract

Wit is a form of rich interaction that is often grounded in a specific situation (e.g., a comment in response to an event). In this work, we attempt to build computational models that can produce witty descriptions for a given image. Inspired by a cognitive account of humor appreciation, we employ linguistic wordplay, specifically puns, in image descriptions. We develop two approaches which involve retrieving witty descriptions for a given image from a large corpus of sentences, or generating them via an encoder-decoder neural network architecture. We compare our approach against meaningful baseline approaches via human studies and show substantial improvements. We find that when a human is subject to similar constraints as the model regarding word usage and style, people vote the image descriptions generated by our model to be slightly wittier than human-written witty descriptions. Unsurprisingly, humans are almost always wittier than the model when they are free to choose the vocabulary, style, etc.

View on arXiv
Comments on this paper