ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.07535
36
359

Abstract Syntax Networks for Code Generation and Semantic Parsing

25 April 2017
Maxim Rabinovich
Mitchell Stern
Dan Klein
ArXivPDFHTML
Abstract

Tasks like code generation and semantic parsing require mapping unstructured (or partially structured) inputs to well-formed, executable outputs. We introduce abstract syntax networks, a modeling framework for these problems. The outputs are represented as abstract syntax trees (ASTs) and constructed by a decoder with a dynamically-determined modular structure paralleling the structure of the output tree. On the benchmark Hearthstone dataset for code generation, our model obtains 79.2 BLEU and 22.7% exact match accuracy, compared to previous state-of-the-art values of 67.1 and 6.1%. Furthermore, we perform competitively on the Atis, Jobs, and Geo semantic parsing datasets with no task-specific engineering.

View on arXiv
Comments on this paper