ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.04097
29
25

Recognizing Activities of Daily Living from Egocentric Images

13 April 2017
Alejandro Cartas
Juan Marín
Petia Radeva
Mariella Dimiccoli
    EgoV
ArXivPDFHTML
Abstract

Recognizing Activities of Daily Living (ADLs) has a large number of health applications, such as characterize lifestyle for habit improvement, nursing and rehabilitation services. Wearable cameras can daily gather large amounts of image data that provide rich visual information about ADLs than using other wearable sensors. In this paper, we explore the classification of ADLs from images captured by low temporal resolution wearable camera (2fpm) by using a Convolutional Neural Networks (CNN) approach. We show that the classification accuracy of a CNN largely improves when its output is combined, through a random decision forest, with contextual information from a fully connected layer. The proposed method was tested on a subset of the NTCIR-12 egocentric dataset, consisting of 18,674 images and achieved an overall accuracy of 86% activity recognition on 21 classes.

View on arXiv
Comments on this paper