ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.02598
22
48

A Sample Complexity Measure with Applications to Learning Optimal Auctions

9 April 2017
Vasilis Syrgkanis
ArXivPDFHTML
Abstract

We introduce a new sample complexity measure, which we refer to as split-sample growth rate. For any hypothesis HHH and for any sample SSS of size mmm, the split-sample growth rate τ^H(m)\hat{\tau}_H(m)τ^H​(m) counts how many different hypotheses can empirical risk minimization output on any sub-sample of SSS of size m/2m/2m/2. We show that the expected generalization error is upper bounded by O(log⁡(τ^H(2m))m)O\left(\sqrt{\frac{\log(\hat{\tau}_H(2m))}{m}}\right)O(mlog(τ^H​(2m))​​). Our result is enabled by a strengthening of the Rademacher complexity analysis of the expected generalization error. We show that this sample complexity measure, greatly simplifies the analysis of the sample complexity of optimal auction design, for many auction classes studied in the literature. Their sample complexity can be derived solely by noticing that in these auction classes, ERM on any sample or sub-sample will pick parameters that are equal to one of the points in the sample.

View on arXiv
Comments on this paper