31
19

GoDP: Globally optimized dual pathway system for facial landmark localization in-the-wild

Abstract

Facial landmark localization is a fundamental module for pose-invariant face recognition. The most common approach for facial landmark detection is cascaded regression, which is composed of two steps: feature extraction and facial shape regression. Recent methods employ deep convolutional networks to extract robust features for each step, while the whole system could be regarded as a deep cascaded regression architecture. In this work, instead of employing a deep regression network, a Globally Optimized Dual-Pathway (GoDP) deep architecture is proposed to identify the target pixels through solving a cascaded pixel labeling problem without resorting to high-level inference models or complex stacked architecture. The proposed end-to-end system relies on distance-aware softmax functions and dual-pathway proposal-refinement architecture. Results show that it outperforms the state-of-the-art cascaded regression-based methods on multiple in-the-wild face alignment databases. The model achieves 1.84 normalized mean error (NME) on the AFLW database, which outperforms 3DDFA by 61.8%. Experiments on face identification demonstrate that GoDP, coupled with DPM-headhunter, is able to improve rank-1 identification rate by 44.2% compared to Dlib toolbox on a challenging database.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.