ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.01430
34
40

Detecting confounding in multivariate linear models via spectral analysis

5 April 2017
Dominik Janzing
B. Schoelkopf
ArXivPDFHTML
Abstract

We study a model where one target variable Y is correlated with a vector X:=(X_1,...,X_d) of predictor variables being potential causes of Y. We describe a method that infers to what extent the statistical dependences between X and Y are due to the influence of X on Y and to what extent due to a hidden common cause (confounder) of X and Y. The method relies on concentration of measure results for large dimensions d and an independence assumption stating that, in the absence of confounding, the vector of regression coefficients describing the influence of each X on Y typically has `generic orientation' relative to the eigenspaces of the covariance matrix of X. For the special case of a scalar confounder we show that confounding typically spoils this generic orientation in a characteristic way that can be used to quantitatively estimate the amount of confounding.

View on arXiv
Comments on this paper