ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.00924
30
2

Japanese Sentiment Classification using a Tree-Structured Long Short-Term Memory with Attention

4 April 2017
R. Miyazaki
Mamoru Komachi
ArXivPDFHTML
Abstract

Previous approaches to training syntax-based sentiment classification models required phrase-level annotated corpora, which are not readily available in many languages other than English. Thus, we propose the use of tree-structured Long Short-Term Memory with an attention mechanism that pays attention to each subtree of the parse tree. Experimental results indicate that our model achieves the state-of-the-art performance in a Japanese sentiment classification task.

View on arXiv
Comments on this paper