ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.00756
76
23
v1v2 (latest)

Multi-Advisor Reinforcement Learning

3 April 2017
Romain Laroche
Mehdi Fatemi
Joshua Romoff
H. V. Seijen
    OffRL
ArXiv (abs)PDFHTML
Abstract

We consider tackling a single-agent RL problem by distributing it to nnn learners. These learners, called advisors, endeavour to solve the problem from a different focus. Their advice, taking the form of action values, is then communicated to an aggregator, which is in control of the system. We show that the local planning method for the advisors is critical and that none of the ones found in the literature is flawless: the egocentric planning overestimates values of states where the other advisors disagree, and the agnostic planning is inefficient around danger zones. We introduce a novel approach called empathic and discuss its theoretical aspects. We empirically examine and validate our theoretical findings on a fruit collection task.

View on arXiv
Comments on this paper