30
2

Comparison of multi-task convolutional neural network (MT-CNN) and a few other methods for toxicity prediction

Abstract

Toxicity analysis and prediction are of paramount importance to human health and environmental protection. Existing computational methods are built from a wide variety of descriptors and regressors, which makes their performance analysis difficult. For example, deep neural network (DNN), a successful approach in many occasions, acts like a black box and offers little conceptual elegance or physical understanding. The present work constructs a common set of microscopic descriptors based on established physical models for charges, surface areas and free energies to assess the performance of multi-task convolutional neural network (MT-CNN) architectures and a few other approaches, including random forest (RF) and gradient boosting decision tree (GBDT), on an equal footing. Comparison is also given to convolutional neural network (CNN) and non-convolutional deep neural network (DNN) algorithms. Four benchmark toxicity data sets (i.e., endpoints) are used to evaluate various approaches. Extensive numerical studies indicate that the present MT-CNN architecture is able to outperform the state-of-the-art methods.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.