55
25
v1v2 (latest)

MSE estimates for multitaper spectral estimation and off-grid compressive sensing

Abstract

We obtain estimates for the Mean Squared Error (MSE) for the multitaper spectral estimator and certain compressive acquisition methods for multi-band signals. We confirm a fact discovered by Thomson [Spectrum estimation and harmonic analysis, Proc. IEEE, 1982]: assuming bandwidth WW and NN time domain observations, the average of the square of the first K=2NWK=2NW Slepian functions approaches, as KK grows, an ideal band-pass kernel for the interval [W,W][-W,W]. We provide an analytic proof of this fact and measure the corresponding rate of convergence in the L1L^{1} norm. This validates a heuristic approximation used to control the MSE of the multitaper estimator. The estimates have also consequences for the method of compressive acquisition of multi-band signals introduced by Davenport and Wakin, giving MSE approximation bounds for the dictionary formed by modulation of the critical number of prolates.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.