ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.07285
22
20

From safe screening rules to working sets for faster Lasso-type solvers

21 March 2017
Mathurin Massias
Alexandre Gramfort
Joseph Salmon
ArXivPDFHTML
Abstract

Convex sparsity-promoting regularizations are ubiquitous in modern statistical learning. By construction, they yield solutions with few non-zero coefficients, which correspond to saturated constraints in the dual optimization formulation. Working set (WS) strategies are generic optimization techniques that consist in solving simpler problems that only consider a subset of constraints, whose indices form the WS. Working set methods therefore involve two nested iterations: the outer loop corresponds to the definition of the WS and the inner loop calls a solver for the subproblems. For the Lasso estimator a WS is a set of features, while for a Group Lasso it refers to a set of groups. In practice, WS are generally small in this context so the associated feature Gram matrix can fit in memory. Here we show that the Gauss-Southwell rule (a greedy strategy for block coordinate descent techniques) leads to fast solvers in this case. Combined with a working set strategy based on an aggressive use of so-called Gap Safe screening rules, we propose a solver achieving state-of-the-art performance on sparse learning problems. Results are presented on Lasso and multi-task Lasso estimators.

View on arXiv
Comments on this paper