ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.04929
19
33

SyntaxNet Models for the CoNLL 2017 Shared Task

15 March 2017
Chris Alberti
D. Andor
Ivan Bogatyy
Michael Collins
D. Gillick
Lingpeng Kong
Terry Koo
Ji Ma
Mark Omernick
Slav Petrov
C. Thanapirom
Zora Tung
David J. Weiss
    3DV
ArXivPDFHTML
Abstract

We describe a baseline dependency parsing system for the CoNLL2017 Shared Task. This system, which we call "ParseySaurus," uses the DRAGNN framework [Kong et al, 2017] to combine transition-based recurrent parsing and tagging with character-based word representations. On the v1.3 Universal Dependencies Treebanks, the new system outpeforms the publicly available, state-of-the-art "Parsey's Cousins" models by 3.47% absolute Labeled Accuracy Score (LAS) across 52 treebanks.

View on arXiv
Comments on this paper