ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.01661
34
147

SegICP: Integrated Deep Semantic Segmentation and Pose Estimation

5 March 2017
J. M. Wong
Vincent Kee
T. Le
S. Wagner
G. Mariottini
Abraham Schneider
L. Hamilton
R. Chipalkatty
Mitchell Hebert
David M. S. Johnson
Jimmy Wu
Bolei Zhou
Antonio Torralba
ArXivPDFHTML
Abstract

Recent robotic manipulation competitions have highlighted that sophisticated robots still struggle to achieve fast and reliable perception of task-relevant objects in complex, realistic scenarios. To improve these systems' perceptive speed and robustness, we present SegICP, a novel integrated solution to object recognition and pose estimation. SegICP couples convolutional neural networks and multi-hypothesis point cloud registration to achieve both robust pixel-wise semantic segmentation as well as accurate and real-time 6-DOF pose estimation for relevant objects. Our architecture achieves 1cm position error and <5^\circangleerrorinrealtimewithoutaninitialseed.WeevaluateandbenchmarkSegICPagainstanannotateddatasetgeneratedbymotioncapture. angle error in real time without an initial seed. We evaluate and benchmark SegICP against an annotated dataset generated by motion capture.angleerrorinrealtimewithoutaninitialseed.WeevaluateandbenchmarkSegICPagainstanannotateddatasetgeneratedbymotioncapture.

View on arXiv
Comments on this paper