ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.01474
19
9

Sharp bounds for population recovery

4 March 2017
Anindya De
Ryan O'Donnell
Rocco A. Servedio
ArXivPDFHTML
Abstract

The population recovery problem is a basic problem in noisy unsupervised learning that has attracted significant research attention in recent years [WY12,DRWY12, MS13, BIMP13, LZ15,DST16]. A number of different variants of this problem have been studied, often under assumptions on the unknown distribution (such as that it has restricted support size). In this work we study the sample complexity and algorithmic complexity of the most general version of the problem, under both bit-flip noise and erasure noise model. We give essentially matching upper and lower sample complexity bounds for both noise models, and efficient algorithms matching these sample complexity bounds up to polynomial factors.

View on arXiv
Comments on this paper