ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.08898
13
31

Lipschitz Optimisation for Lipschitz Interpolation

28 February 2017
Jan-Peter Calliess
ArXivPDFHTML
Abstract

Techniques known as Nonlinear Set Membership prediction, Kinky Inference or Lipschitz Interpolation are fast and numerically robust approaches to nonparametric machine learning that have been proposed to be utilised in the context of system identification and learning-based control. They utilise presupposed Lipschitz properties in order to compute inferences over unobserved function values. Unfortunately, most of these approaches rely on exact knowledge about the input space metric as well as about the Lipschitz constant. Furthermore, existing techniques to estimate the Lipschitz constants from the data are not robust to noise or seem to be ad-hoc and typically are decoupled from the ultimate learning and prediction task. To overcome these limitations, we propose an approach for optimising parameters of the presupposed metrics by minimising validation set prediction errors. To avoid poor performance due to local minima, we propose to utilise Lipschitz properties of the optimisation objective to ensure global optimisation success. The resulting approach is a new flexible method for nonparametric black-box learning. We provide experimental evidence of the competitiveness of our approach on artificial as well as on real data.

View on arXiv
Comments on this paper