ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.08160
30
0
v1v2v3v4v5v6v7v8v9v10v11v12v13 (latest)

HashBox: Hash Hierarchical Segmentation exploiting Bounding Box Object Detection

27 February 2017
J. Curtò
I. Zarza
Alex Smola
Luc Van Gool
ArXiv (abs)PDFHTML
Abstract

We propose a novel approach to address the Simultaneous Detection and Segmentation problem. Using hierarchical structures we use an efficient and accurate procedure that exploits the hierarchy feature information using Locality Sensitive Hashing. We build on recent work that utilizes convolutional neural networks to detect bounding boxes in an image (Faster R-CNN) and then use the top similar hierarchical region that best fits each bounding box after hashing, we call this approach HashBox. We then refine our final segmentation results by automatic hierarchy pruning. HashBox introduces a train-free alternative to Hypercolumns. We conduct extensive experiments on Pascal VOC 2012 segmentation dataset, showing that HashBox gives competitive state-of-the-art object segmentations.

View on arXiv
Comments on this paper