28
34

Tensor Balancing on Statistical Manifold

Abstract

We solve tensor balancing, rescaling an Nth order nonnegative tensor by multiplying N tensors of order N - 1 so that every fiber sums to one. This generalizes a fundamental process of matrix balancing used to compare matrices in a wide range of applications from biology to economics. We present an efficient balancing algorithm with quadratic convergence using Newton's method and show in numerical experiments that the proposed algorithm is several orders of magnitude faster than existing ones. To theoretically prove the correctness of the algorithm, we model tensors as probability distributions in a statistical manifold and realize tensor balancing as projection onto a submanifold. The key to our algorithm is that the gradient of the manifold, used as a Jacobian matrix in Newton's method, can be analytically obtained using the Moebius inversion formula, the essential of combinatorial mathematics. Our model is not limited to tensor balancing, but has a wide applicability as it includes various statistical and machine learning models such as weighted DAGs and Boltzmann machines.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.