121
1410

Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning

Abstract

In recent years, a branch of machine learning called Deep Learning has become incredibly popular thanks to the ability of a new class of algorithms to model and interpret a large quantity of data in a similar way to humans. Properly training deep learning models involves collecting a vast amount of users' private data, including habits, geographical positions, interests, and much more. Another major issue is that it is possible to extract from trained models useful information about the training set and this hinders collaboration among distrustful participants or parties that deal with sensitive information. To tackle this problem, collaborative deep learning models have recently been proposed where parties share only a subset of the parameters in the attempt to keep their respective training sets private. Parameters can also be obfuscated via differential privacy to make information extraction even more challenging, as shown by Shokri and Shmatikov at CCS'15. Unfortunately, we show that any privacy-preserving collaborative deep learning is susceptible to a powerful attack that we devise in this paper. In particular, we show that a distributed or decentralized deep learning approach is fundamentally broken and does not protect the training sets of honest participants. The attack we developed exploits the real-time nature of the learning process that allows the adversary to train a Generative Adversarial Network (GAN) that generates valid samples of the targeted training set that was meant to be private. Interestingly, we show that differential privacy applied to shared parameters of the model as suggested at CCS'15 and CCS'16 is utterly futile. In our generative model attack, all techniques adopted to scramble or obfuscate shared parameters in collaborative deep learning are rendered ineffective with no possibility of a remedy under the threat model considered.

View on arXiv
Comments on this paper