ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.07117
32
18

LTSG: Latent Topical Skip-Gram for Mutually Learning Topic Model and Vector Representations

23 February 2017
Jarvan Law
Hankui Zhuo
Junhua He
Erhu Rong
    BDL
ArXiv (abs)PDFHTML
Abstract

Topic models have been widely used in discovering latent topics which are shared across documents in text mining. Vector representations, word embeddings and topic embeddings, map words and topics into a low-dimensional and dense real-value vector space, which have obtained high performance in NLP tasks. However, most of the existing models assume the result trained by one of them are perfect correct and used as prior knowledge for improving the other model. Some other models use the information trained from external large corpus to help improving smaller corpus. In this paper, we aim to build such an algorithm framework that makes topic models and vector representations mutually improve each other within the same corpus. An EM-style algorithm framework is employed to iteratively optimize both topic model and vector representations. Experimental results show that our model outperforms state-of-art methods on various NLP tasks.

View on arXiv
Comments on this paper