ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.03592
38
27

Graph Neural Networks and Boolean Satisfiability

12 February 2017
Benedikt Bünz
Matthew Lamm
    GNNAI4CENAI
ArXiv (abs)PDFHTML
Abstract

In this paper we explore whether or not deep neural architectures can learn to classify Boolean satisfiability (SAT). We devote considerable time to discussing the theoretical properties of SAT. Then, we define a graph representation for Boolean formulas in conjunctive normal form, and train neural classifiers over general graph structures called Graph Neural Networks, or GNNs, to recognize features of satisfiability. To the best of our knowledge this has never been tried before. Our preliminary findings are potentially profound. In a weakly-supervised setting, that is, without problem specific feature engineering, Graph Neural Networks can learn features of satisfiability.

View on arXiv
Comments on this paper