ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.03488
16
9

Octopus: A Framework for Cost-Quality-Time Optimization in Crowdsourcing

12 February 2017
Karan Goel
Shreya Rajpal
Mausam
ArXivPDFHTML
Abstract

We present Octopus, an AI agent to jointly balance three conflicting task objectives on a micro-crowdsourcing marketplace - the quality of work, total cost incurred, and time to completion. Previous control agents have mostly focused on cost-quality, or cost-time tradeoffs, but not on directly controlling all three in concert. A naive formulation of three-objective optimization is intractable; Octopus takes a hierarchical POMDP approach, with three different components responsible for setting the pay per task, selecting the next task, and controlling task-level quality. We demonstrate that Octopus significantly outperforms existing state-of-the-art approaches on real experiments. We also deploy Octopus on Amazon Mechanical Turk, showing its ability to manage tasks in a real-world dynamic setting.

View on arXiv
Comments on this paper