ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.02709
33
8

Predicting Privileged Information for Height Estimation

9 February 2017
N. Sarafianos
Christophoros Nikou
Ioannis A. Kakadiaris
ArXivPDFHTML
Abstract

In this paper, we propose a novel regression-based method for employing privileged information to estimate the height using human metrology. The actual values of the anthropometric measurements are difficult to estimate accurately using state-of-the-art computer vision algorithms. Hence, we use ratios of anthropometric measurements as features. Since many anthropometric measurements are not available at test time in real-life scenarios, we employ a learning using privileged information (LUPI) framework in a regression setup. Instead of using the LUPI paradigm for regression in its original form (i.e., \epsilon-SVR+), we train regression models that predict the privileged information at test time. The predictions are then used, along with observable features, to perform height estimation. Once the height is estimated, a mapping to classes is performed. We demonstrate that the proposed approach can estimate the height better and faster than the \epsilon-SVR+ algorithm and report results for different genders and quartiles of humans.

View on arXiv
Comments on this paper