It is well known in many settings that reversible Langevin diffusions in confining potentials converge to equilibrium exponentially fast. Adding irreversible perturbations to the drift of a Langevin diffusion that maintain the same invariant measure accelerates its convergence to stationarity. Many existing works thus advocate the use of such non-reversible dynamics for sampling. When implementing Markov Chain Monte Carlo algorithms (MCMC) using time discretisations of such Stochastic Differential Equations (SDEs), one can append the discretization with the usual Metropolis-Hastings accept-reject step and this is often done in practice because the accept--reject step eliminates bias. On the other hand, such a step makes the resulting chain reversible. It is not known whether adding the accept-reject step preserves the faster mixing properties of the non-reversible dynamics. In this paper, we address this gap between theory and practice by analyzing the optimal scaling of MCMC algorithms constructed from proposal moves that are time-step Euler discretisations of an irreversible SDE, for high dimensional Gaussian target measures. We call the resulting algorithm the \imala, in comparison to the classical MALA algorithm (here {\em ip} is for irreversible proposal). In order to quantify how the cost of the algorithm scales with the dimension , we prove invariance principles for the appropriately rescaled chain. In contrast to the usual MALA algorithm, we show that there could be two regimes asymptotically: (i) a diffusive regime, as in the MALA algorithm and (ii) a ``fluid" regime where the limit is an ordinary differential equation. We provide concrete examples where the limit is a diffusion, as in the standard MALA, but with provably higher limiting acceptance probabilities. Numerical results are also given corroborating the theory.
View on arXiv