ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.00841
50
96

Distributed Optimization Using the Primal-Dual Method of Multipliers

2 February 2017
Guoqiang Zhang
Richard Heusdens
ArXivPDFHTML
Abstract

In this paper, we propose the primal-dual method of multipliers (PDMM) for distributed optimization over a graph. In particular, we optimize a sum of convex functions defined over a graph, where every edge in the graph carries a linear equality constraint. In designing the new algorithm, an augmented primal-dual Lagrangian function is constructed which smoothly captures the graph topology. It is shown that a saddle point of the constructed function provides an optimal solution of the original problem. Further under both the synchronous and asynchronous updating schemes, PDMM has the convergence rate of O(1/K) (where K denotes the iteration index) for general closed, proper and convex functions. Other properties of PDMM such as convergence speeds versus different parameter- settings and resilience to transmission failure are also investigated through the experiments of distributed averaging.

View on arXiv
Comments on this paper